Approximate convexity and submonotonicity
نویسندگان
چکیده
منابع مشابه
Approximate convexity and submonotonicity
It is shown that a locally Lipschitz function is approximately convex if, and only if, its Clarke subdifferential is a submonotone operator. Consequently, in finite dimensions, the class of locally Lipschitz approximately convex functions coincides with the class of lower-C functions. Directional approximate convexity is introduced and shown to be a natural extension of the class of lower-C fun...
متن کاملConvexity results and sharp error estimates in approximate multivariate integration
An interesting property of the midpoint rule and trapezoidal rule, which is expressed by the so-called Hermite–Hadamard inequalities, is that they provide one-sided approximations to the integral of a convex function. We establish multivariate analogues of the Hermite–Hadamard inequalities and obtain access to multivariate integration formulae via convexity, in analogy to the univariate case. I...
متن کاملSubdifferential characterization of approximate convexity: the lower semicontinuous case
Throughout, X stands for a real Banach space, SX for its unit sphere, X ∗ for its topological dual, and 〈·, ·〉 for the duality pairing. All the functions f : X → R∪{+∞} are lower semicontinuous. The Clarke subdifferential , the Hadamard subdifferential and the Fréchet subdifferential of f are respectively denoted by ∂Cf , ∂Hf and ∂F f . The Zagrodny two points mean value inequality has proved t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2004
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2003.11.004