Approximate convexity and submonotonicity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate convexity and submonotonicity

It is shown that a locally Lipschitz function is approximately convex if, and only if, its Clarke subdifferential is a submonotone operator. Consequently, in finite dimensions, the class of locally Lipschitz approximately convex functions coincides with the class of lower-C functions. Directional approximate convexity is introduced and shown to be a natural extension of the class of lower-C fun...

متن کامل

Convexity results and sharp error estimates in approximate multivariate integration

An interesting property of the midpoint rule and trapezoidal rule, which is expressed by the so-called Hermite–Hadamard inequalities, is that they provide one-sided approximations to the integral of a convex function. We establish multivariate analogues of the Hermite–Hadamard inequalities and obtain access to multivariate integration formulae via convexity, in analogy to the univariate case. I...

متن کامل

Subdifferential characterization of approximate convexity: the lower semicontinuous case

Throughout, X stands for a real Banach space, SX for its unit sphere, X ∗ for its topological dual, and 〈·, ·〉 for the duality pairing. All the functions f : X → R∪{+∞} are lower semicontinuous. The Clarke subdifferential , the Hadamard subdifferential and the Fréchet subdifferential of f are respectively denoted by ∂Cf , ∂Hf and ∂F f . The Zagrodny two points mean value inequality has proved t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2004

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2003.11.004